Home

консултант крепост Адрес на улица kappa opioid inhibition of morphine and cocaine self administration in rats Лице, отговарящо за спортната игра ПапуаНова Гвинея Еквивалентен

Interactions between Kappa Opioid Agonists and Cocaine: Preclinical Studies  - MELLO - 2000 - Annals of the New York Academy of Sciences - Wiley Online  Library
Interactions between Kappa Opioid Agonists and Cocaine: Preclinical Studies - MELLO - 2000 - Annals of the New York Academy of Sciences - Wiley Online Library

Frontiers | Escalated Oxycodone Self-Administration and Punishment:  Differential Expression of Opioid Receptors and Immediate Early Genes in  the Rat Dorsal Striatum and Prefrontal Cortex
Frontiers | Escalated Oxycodone Self-Administration and Punishment: Differential Expression of Opioid Receptors and Immediate Early Genes in the Rat Dorsal Striatum and Prefrontal Cortex

A single, extinction-based treatment with a kappa opioid receptor agonist  elicits a long-term reduction in cocaine relapse | Neuropsychopharmacology
A single, extinction-based treatment with a kappa opioid receptor agonist elicits a long-term reduction in cocaine relapse | Neuropsychopharmacology

Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B  Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive  Side-Effects than Salvinorin A in Rodents | HTML
Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents | HTML

Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of  Sensitization and on the Maintenance of Cocaine Self-administration |  Neuropsychopharmacology
Effects of the Kappa-opioid Receptor Agonist, U69593, on the Development of Sensitization and on the Maintenance of Cocaine Self-administration | Neuropsychopharmacology

Locomotor activity: A distinctive index in morphine self-administration in  rats | PLOS ONE
Locomotor activity: A distinctive index in morphine self-administration in rats | PLOS ONE

The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology  of Schizophrenia: A Review of the Evidence - Biological Psychiatry
The Role of Dynorphin and the Kappa Opioid Receptor in the Symptomatology of Schizophrenia: A Review of the Evidence - Biological Psychiatry

Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in  Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv
Effects of Kappa Opioid Receptor Agonists on Fentanyl vs. Food Choice in Male and Female Rats: Contingent vs. Non-Contingent Administration | bioRxiv

Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and  Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology
Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology

Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B  Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive  Side-Effects than Salvinorin A in Rodents | HTML
Molecules | Free Full-Text | Kappa Opioid Receptor Agonist Mesyl Sal B Attenuates Behavioral Sensitization to Cocaine with Fewer Aversive Side-Effects than Salvinorin A in Rodents | HTML

Systemic nicotine enhances opioid self-administration and modulates the  formation of opioid-associated memories partly through actions within the  insular cortex | Scientific Reports
Systemic nicotine enhances opioid self-administration and modulates the formation of opioid-associated memories partly through actions within the insular cortex | Scientific Reports

Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of  Medicinal Chemistry
Orvinols with Mixed Kappa/Mu Opioid Receptor Agonist Activity | Journal of Medicinal Chemistry

Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor:  Trends in Pharmacological Sciences
Critical Assessment of G Protein-Biased Agonism at the μ-Opioid Receptor: Trends in Pharmacological Sciences

Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands:  Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience
Signaling Properties of Structurally Diverse Kappa Opioid Receptor Ligands: Toward in Vitro Models of in Vivo Responses | ACS Chemical Neuroscience

Hot topics in opioid pharmacology: mixed and biased opioids - British  Journal of Anaesthesia
Hot topics in opioid pharmacology: mixed and biased opioids - British Journal of Anaesthesia

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect

Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and  Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology
Effects of Mixed-Action κ/μ Opioids on Cocaine Self-Administration and Cocaine Discrimination by Rhesus Monkeys | Neuropsychopharmacology

Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and  Back
Frontiers | The Kappa Opioid Receptor: From Addiction to Depression, and Back

Fentanyl vapor self-administration model in mice to study opioid addiction  | Science Advances
Fentanyl vapor self-administration model in mice to study opioid addiction | Science Advances

IJMS | Free Full-Text | The Mechanisms Involved in Morphine Addiction: An  Overview | HTML
IJMS | Free Full-Text | The Mechanisms Involved in Morphine Addiction: An Overview | HTML

Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors
Frontiers | Cebranopadol, a Mixed Opioid Agonist, Reduces Cocaine Self- administration through Nociceptin Opioid and Mu Opioid Receptors

Frontiers | Opioid Receptor-Mediated Regulation of Neurotransmission in the  Brain
Frontiers | Opioid Receptor-Mediated Regulation of Neurotransmission in the Brain

Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic  Plasticity - ScienceDirect
Kappa Opioid Receptors Regulate Stress-Induced Cocaine Seeking and Synaptic Plasticity - ScienceDirect